length 2: 12, 21
length 3: 123, 213, 231, 312, 321
length 4: 2341, 3124, 3412, 3421, 4123, 4231, 4312, 4321
length 5: 34512, 34521, 45123, 45231, 45312, 45321, 52341, 53412, 53421, 54123, 54231, 54312, 54321
$\mathcal{A}$ = Av(132, 1234, 2134, 2314, 3214, 3241, 4213)
$\mathcal{B}$ = Av(123, 132, 213, 231, 321)
$\mathcal{C}$ = Av(132, 213, 1234)
$\operatorname{F_{4}}{\left (x \right )} = \operatorname{F_{0}}{\left (x \right )} + \operatorname{F_{3}}{\left (x \right )}$
$\operatorname{F_{0}}{\left (x \right )} = 1$
$\operatorname{F_{3}}{\left (x \right )} = \operatorname{F_{1}}{\left (x \right )} + \operatorname{F_{2}}{\left (x \right )}$
$\operatorname{F_{1}}{\left (x \right )} = x \left(x^{3} + 2 x^{2} + x + 1\right)$
$\operatorname{F_{2}}{\left (x \right )} = - \frac{x^{2} \left(x^{2} + x + 1\right)^{2}}{x^{3} + x^{2} + x - 1}$