Av(1234, 1342, 1423, 1432, 2143, 2314, 2413, 2431, 3142, 3214)

Permutation examples

length 2: 12, 21

length 3: 123, 132, 213, 231, 312, 321

length 4: 1243, 1324, 2134, 2341, 3124, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321

length 5: 32451, 34512, 34521, 42351, 43512, 43521, 45123, 45132, 45213, 45231, 45312, 45321, 51243, 51324, 52134, 52341, 53124, 53241, 53412, 53421, 54123, 54132, 54213, 54231, 54312, 54321

Conjectured Struct Cover

$\mathcal{A}$
$=$
$\bigsqcup$
$\bullet$
$\bullet$
$\bullet$
$\bigsqcup$
$\bullet$
$\bullet$
$\bullet$
$\bullet$
$\bigsqcup$
$\bullet$
$\mathcal{A}$
$\bigsqcup$
$\bullet$
$\bullet$ $\bullet$
$\mathcal{A}$
$\bigsqcup$
$\bullet$
$\bullet$ $\bullet$
$\bullet$
$\mathcal{A}$
$\bigsqcup$
$\bullet$
$\bullet$
$\mathcal{A}$
$\bigsqcup$
$\bullet$
$\bullet$
$\bullet$
$\bullet$

Legend

$\mathcal{A}$ = Av(1234, 1342, 1423, 1432, 2143, 2314, 2413, 2431, 3142, 3214)

Recurrence relation

$a_{0} = 1,~a_{1} = 1,~a_{2} = 2,~a_{3} = 6,~a_{4} = 14$

$a_{n} = a_{n-1}+2a_{n-3}+2a_{n-4}+a_{n-2}$